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nstitute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, Pardubice 532 10, Czech Republic

r t i c l e i n f o

rticle history:
eceived 11 June 2009
eceived in revised form 9 September 2009
ccepted 9 September 2009

a b s t r a c t

The method of simulation of heat transfer during thermal loading of energetic materials is introduced.
The combination of the simple finite difference method with a time step reduction enables the quick
and precise calculation of ignition times. The results are in accordance with published model data. The
method was also used to simulate heat transfer during the slow cookoff test and the result agrees very
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. Introduction

Self-heating and the possibility of the subsequent spontaneous
gnition is a very important problem in the field of explosives safety.
he thermal decomposition of an energetic material is an exother-
ic reaction. If the heat generated by the decomposition of the

xplosive is not conducted away to the surroundings, it will accu-
ulate in the reacting material and increase its temperature. As

he decomposition reaction rate increases, more heat is generated.
his process can potentially lead to the spontaneous ignition of the
aterial and to thermal explosion.
Thermal explosion theory is based on the comparing of the heat

enerated by the decomposition reaction with the heat losses into
he surroundings. The first thermal explosion theory was suggested
y Semenov in 1928 [1] and was based on uniform temperature
istribution in the reactant. The second classic theory, proposed by
rank-Kamenetskii in 1939 [2], takes into the account heat conduc-
ion in the reactant. If the decomposition reaction obeys Arrhenius
inetics, the heat transfer can be described (according to Frank-
amenetskii theory) by the following equation:

c
∂T = �∇2T + �Qf (˛)A exp

(−E
)

, (1)

∂t RT

here � is density [kg m−3], c is specific heat capacity[J kg−1 K−1],
is temperature [K], t is time [s], � is thermal conductivity coeffi-

ient [W m−1 K−1], Q is decomposition heat [J kg−1], f (˛) is reaction

∗ Tel.: +420 466 038 018; fax: +420 466 038 024.
E-mail address: jakub.selesovsky@gmail.com.

304-3894/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2009.09.049
model depending on the conversion ˛ (both ˛ and f (˛) are dimen-
sionless), A is pre-exponential factor [s−1], E is activation energy
[J mol−1] and R is universal gas constant [J mol−1 K−1]. This equation
cannot be solved analytically, because of the exponential depen-
dency of the generated heat (the second term on the right side) on
temperature. The general reaction model f (˛) also makes the solu-
tion more difficult. Frank-Kamenetskii solved a simplified form1 of
this equation.

Zinn and Mader [3] solved the Eq. (1) using the zero order reac-
tion model in 1960. They combined analytical solution of unsteady
heat transfer for infinite slab, infinite cylinder and sphere (Eq. (1)
without the second term on the right side) with the time discretiza-
tion. The time discretization enabled evaluation of the temperature
increase by the chemical reaction (the second term on the right side
of Eq. (1)). The extension of their solution including the first order
reactions is described two years later by Zinn and Rogers [4].

Eq. (1) was successfully solved by Sućeska [5] using the finite
difference method and a zero order kinetic model, as implemented
in his THERMEX code. Sućeska and Matečić-Mušanić improved the
THERMEX program to include arbitrary reaction order and an auto-
catalytic reaction model two years later [6]. Another solution of Eq.
(1) was proposed by Aydemir et al. [7]. Their code REACON-1D uses

the finite element method and a zero order kinetic model. The use
of finite element method for the solution of the Eq. (1) in the AKTS
thermal safety software has been reported by Roduit [8].

1 He used one dimensional geometric shapes, a zero order reaction model (f (˛) =
1), simplification of the exponential term, and constant temperature as the boundary
condition.

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:jakub.selesovsky@gmail.com
dx.doi.org/10.1016/j.jhazmat.2009.09.049
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The initial and boundary conditions (‘IBC’ in Fig. 1) are to be
specified also. The distribution of temperature and degree of con-
version for the starting time of the simulation and the description
of the boundary temperature (constant or time dependent, direct
Fig. 1. The flowchart scheme of the calculation (IBC—initial and bou

The self-ignition was also modeled as a part of slow cookoff sim-
lation by other labs using their in house codes (SNL (USA) [9,10],
LNL (USA) [11–13]). The cookoff was also successfully simulated
n TNO (Netherlands) [14] and in DSTO (Australia) [15] using mod-
fications of existing finite element codes.

The purpose of this article is to introduce a simple solution of Eq.
1). The presented solution was derived from the finite difference

ethod applied by Sućeska [5,6] which is modified using a time
tep reduction. A time step reduction ensures the precision of the
esults and the speed of their calculation.

. Calculation

The Eq. (1) was solved using the finite difference method with
he time step reduction. The procedure of calculation can be divided
nto four parts, as displayed in Fig. 1. The first part is the input
f the data (material properties, initial and boundary conditions

‘IBC’ in Fig. 1), numerical parameters (‘NP’ in Fig. 1). The second
nd the third part are the calculation steps. The second part is the
tandard heat transfer calculated by explicit finite differences (‘FD
tep’ in Fig. 1, explained in Section 2.2). The third part is the kinetic
alculation of heat evolved from the decomposing material (‘Kinetic
conditions, NP—numerical input parameters, FD—finite difference).

step’ in Fig. 1, explained in Section 2.3). This third part influences
the changes of the time step. The second and the third parts are
repeated until the simulation is ended. The last part is the output
of the data.

2.1. Input parameters

Three kinds of input parameters are needed for the calculation.
The physical properties2 (�, c and �) and the description of the
decomposition reaction (Q, E, A and f (˛)) are needed to describe
the simulated material.
2 The physical properties are dependent on temperature. It is suitable to use their
values for temperatures close to the temperatures used in the simulation. E.g. if
the slow cookoff is modeled with the starting temperature 90 ◦C and the ignition
temperature 140 ◦C, the values of �, c and � should be determined cca at 120 ◦C. In
the small temperature interval they can be considered constant.
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becomes less accurate despite the fact that it is still stable. To sus-
ig. 2. The solution grid from the finite difference method and the explicit finite
ifference stencil.

r convection) fall into this category. The boundary conditions are
escribed in Appendix A.

The third kind of parameters are the parameters influencing
he numerical solution (‘NP’ in Fig. 1). It is necessary to divide
he modeled body into the equally spaced nodes and to specify
he distance between nodes (�x). The initial time step is calcu-
ated automatically from the stability condition (see Section 2.2).
he time step is monitored and reduced during the calculation. To
ontrol the time step reduction, two other parameters are needed.
he maximum temperature rise (�Tmax) during one time step due
o the decomposition of the energetic material, and the reduc-
ion factor for the decrease of the time step (tred). The time step
ontrol is described in the Section 2.3 below. To indicate igni-
ion, the maximum allowable temperature Tmax and the minimum
llowable time step �tmin are used. The last parameter is the end
ime, at which the simulation is stopped, if the ignition does not
ccur.

.2. Finite difference step

The principle of finite difference methods3 is to approximate
he derivatives by differences and to solve the resulting algebraic
quations. The solution is obtained in discrete points (nodes) and
n discrete time intervals. The discretization (for the 1D example)
nd the resulting solution grid is displayed in Fig. 2. The points rep-
esent the temperatures, the i and j subscripts correspond to space
nd time discretization. In case of 1D bodies the space coordinate x
orresponds to the distance from the center of the symmetry (the
entral plane of an infinite slab, the axis of an infinite cylinder and
he center of a sphere).

The explicit scheme stencil is also indicated in Fig. 2. The word
xplicit means, that every new value of temperature Ti,j+1 is calcu-
ated from the results obtained in the preceding time step (Ti−1,j ,
i,j and Ti+1,j):
i,j+1 = Ti,j + ��t

c�

(
Ti+1,j + Ti−1,j − 2Ti,j

(�x)2
+ a

x

Ti+1,j − Ti,j

�x

)
, (2)

3 The finite difference method itself is described in any general textbook of numer-
cal mathematics, e.g. [16], and therefore only a brief description follows.
aterials 174 (2010) 289–294 291

where x is space coordinate (the distance from the mid plane, axis
or center for the case of infinite slab, infinite cylinder and sphere,
respectively) and a is the shape factor.4

The explicit scheme is very simple to use. However, this sim-
plicity is balanced by the stability of this method [16]. The explicit
method stability is conditioned by ratio of the space and time steps.
In case of the heat conduction, the method is stable if the following
stability condition is fulfilled:

� �t

�c(�x)2
≤ 1

2
(3)

The initial time step is calculated using the maximum �t allowed
by the condition (3). During the calculation, the time step can be
reduced, if it is necessary as described below.

2.3. Kinetic step

The temperatures from the finite difference step are the temper-
atures obtained from heat transfer without any chemical reaction.
During thermal loading of explosives heat is also produced by the
decomposing material. The corresponding temperature rise �Ti,j+1
is calculated from the following equation:

�Ti,j+1 = �t

c
Qf (˛i,j)A exp

(
−E

RTi,j+1

)
(4)

where Ti,j+1 are nodal temperatures from the finite difference step
and ˛i,j are nodal values of conversion.

The conversion ˛ is monitored separately in each node. If the
reaction heat Q is known, the amount of heat produced from
decomposition during the time step divided by Q is directly pro-
portional to the increase of the conversion. The reaction model
f (˛) can be specified in an arbitrary form. The usual models (such
as first order, power law, autocatalytic model) can be used. It is
also possible to express the reaction model in the tabular form.
In this case the values of f (˛) are calculated by linear interpola-
tion. This approach is sometimes useful to simulate some complex
decomposition processes.

2.3.1. Time step reduction
The stability condition (3) ensures the stability of the finite dif-

ference solution. However this condition does not ensure sufficient
precision of the results for the simulation of the thermal loading
of explosives. The solution is precise if the decomposition of the
explosives is slow, i.e. the amount of self-heat produced is small.
If the explosive produces a lot of heat, the maximum time step is
too big and the resulting solution is inaccurate. In this case, preci-
sion can be improved by using the smaller time steps for the whole
simulation (e.g. Sućeska and Matečić-Mušanić [6] state that the sta-
bility condition � �t/�c(�x)2 should be smaller than 0.01). This
approach gives precise results, but the calculation takes too long
time. A quick and accurate solution can be obtained by using the
time step reduction.

The principle of the time step reduction is based on the amount
of heat evolved by the decomposing explosive. If the amount of
produced heat is low, the calculation is carried out with the biggest
possible time step, fulfilling the stability condition (3). As soon
as the decomposing explosive produces more heat, the solution
tain the precision, the last results Ti,j+1, �Ti,j+1 have to be canceled
and their calculation is repeated with the smaller �t. The tempera-
ture increment �Ti,j+1 caused by the explosive decomposition can

4 The shape factor a originates from the transformation of the Laplace operator
∇2 into the symmetric one dimensional geometry (a = 0 for the infinite slab, a = 1
for the infinite cylinder and a = 2 for the sphere).
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Table 1
Properties of the explosives, used for the simulation.

RDX [6] Semtex 1A [18]

� [kg m−3] 1800 1493.6
� [W m−1 K−1] 0.293 0.1531
c [J kg−1 K−1] 2093 1480.9

E [J mol−1] 1.99 × 105 2.002 × 105

A [s−1] 3.16 × 1018 1.091 × 1020

f (˛) [−] 1 (1 − ˛) a

Q [J kg−1 K−1] 2.093 × 106 4.024 1 × 106

Numerical parameters b

�x [m] 6.35 × 10−5 7 × 10−4

�Tmax [◦C] 1 1
tred [−] 3 3
Tmax [◦C] 500 500
�tmin [s] 1 × 10−4 1 × 10−4

tend [s] 2000 65 000

The properties of RDX are taken from literature [3]. These parameters are the same
as used for the simulation in [6,7]. The determination of Semtex 1A properties is
described in [18].

a The zero order reaction model was used in [18], the first order reaction model
is used in this work.

b This work.

Table 2
Times to ignition for RDX spheres.

Ts [◦C] Time to ignition [s]

THERMEX [6] REACON-1D [7] This work

180 1051.8 1056.09 1049

step below the minimum value �tmin = 10−4 s in all cases. The
Table 2 also shows the comparison of achieved results with the
already published results of the similar simulations (same material
properties, same geometry, same initial and boundary conditions).
92 J. Šelešovský / Journal of Hazar

e used as a measure of heat production. If the maximum �Ti,j+1 is
igher that limit value (e.g. �Tmax = 1 ◦C), the time step is reduced
y tred (e.g. tred = 3).

The parameter �Tmax plays a crucial role in the time step reduc-
ion. Its value should be sufficiently low to achieve enough precise
esults. In case of using a high �Tmax value, a large amount of heat
an be evolved during one time step, the time behavior of temper-
ture and conversion will not be smooth and the results will not be
ccurate. Values of �Tmax larger than 3 ◦C usually cause these inac-
uracies. The second parameter tred is less important. Small values
f tred close to one increase the number of reductions. Large val-
es of tred cause rapid decrease of the time step during a single
eduction and prolongate the calculation.

.4. Output parameters

The calculation ends by reaching of the end time tend, or by the
gnition of the material. Two ways to identify the ignition are possi-
le. The first one is to specify the maximum allowable temperature
max. If the material reaches this temperature (reasonable value is
.g. Tmax = 500 ◦C), ignition is assumed and the calculation ends.
he second way is to specify the rate of temperature rise inside the
aterial. This can be done through the minimum allowable time

tep �tmin. If the time step is reduced to this minimum value, the
emperature rise is so big, that ignition can be assumed.5 The tend
nd Tmax are tested during every time step, the �tmin is tested after
ach time step reduction, as can be seen in Fig. 1.

The output parameters are dependencies of temperature T(x, t)
nd conversion ˛(x, t) in discretized space and time. From these
ependencies the time and the place of ignition can be expressed.

n the case of a time dependent boundary, the temperature of the
oundary at the time of ignition can be calculated.

.5. Method validation

The whole algorithm was implemented using the GNU/Octave
rogramming language. GNU/Octave is an open source software

ntended for numerical computation and downloadable from the
eb pages [17]. The inputs and outputs are in the form of text files.

As a test of the method suitability, the results were compared
ith previously published modeled data for RDX (Sućeska and
atečić-Mušanić [6] and Aydemir et al. [7]). The slow cookoff test

f Semtex 1A was also simulated by this method, to get a compar-
son with real experimental data. The properties of both materials
re summarized in Table 1.

.6. Model example

The results for the model simulation of an RDX sphere sub-
ected to isothermal boundary conditions have been published
6,7]. The diameter of the sphere was 25.4 mm, the initial tem-
erature was 25 ◦C and the temperature of the surroundings was

etween 180 and 260 ◦C. The properties of RDX are stated in Table 1.
he simulation was carried out in the spherical coordinates for the
urrounding temperatures 180, 200, 220, 240 and 260 ◦C. The con-
itions (geometry, initial and surrounding temperature, material
roperties) were the same as were used in references [6,7].

5 In case of �Tmax = 1 ◦C and �tmin = 10−4 s, the corresponding heating rate is
04 ◦C/s.
200 466.9 467.88 466
220 166.1 167.08 166
240 44.0 44.42 45.0
260 10.3 10.59 10.8

2.7. Experimental comparison

The slow cookoff test6 of Semtex 1A was also modeled using the
finite difference approach with the time step reduction. Semtex 1A
is a Czech commercial plastic bonded explosive. The determina-
tion of its properties, slow cookoff test and the simulation of heat
transfer during cookoff using LS-DYNA code is described in [18].

The cylindrical charge had a diameter of 21 mm and a length
of 90 mm. The initial temperature of the charge was 90 ◦C and the
heating rate was 3.3 ◦C/h. A convection boundary was used with
the heat transfer coefficient h = 100 W m−2 K−1, the surroundings
in this case is the air, which heats the charge.7 The simulation was
carried out in cylindrical coordinates, the shape was considered as
an infinite cylinder.

3. Results and discussion

The results of the simulations for the RDX model data is stated
in Table 2. The simulations were ended by decreasing the time
6 The slow cookoff test is a method for the evaluation of thermal stability of explo-
sives. The explosive charge is placed in the cylindrical steel case and heated slowly
(3.3 ◦C/h) to decomposition. In this case the heating was realised by fanning with
a hot air. The temperature of the surroundings at the time of ignition is one of the
monitored parameters.

7 The charge without the confinement was simulated in this case. The convec-
tion boundary enables heat to be transferred into the surroundings in the case that
the temperature of the surface of the charge is higher than the temperature of the
surrounding air.
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Fig. 3. Temperature behavior in the center of the charge during the simulation of
slow cookoff test of Semtex 1A. The upper ordinate corresponds to the surrounding
air temperature.

Table 3
Ignition temperatures for the slow cookoff test of Semtex 1A.

Ignition temperature [◦C]

Experimental [18] 136.9 ± 2.2
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LS-DYNA simulation [18] 138.0
This work 137.3

he THERMEX code [6] uses finite difference method without
ime reduction, and the REACON-1D [7] code uses finite element

ethod. The differences between published results and the results
resented in this work are small. This comparison shows, that
resented algorithm gives results similar to the other comparable
odes.

The simulation of the Semtex 1A slow cookoff test was also
nded when the time step was reduced to 10−4 s. The modeled
emperature rise in the center of the charge is displayed in Fig. 3.
he ignition was predicted to occur in the center of the charge at
ime 51 605 s and corresponding temperature of the surrounding
ir was 137.3 ◦C (calculated from the boundary condition Ts[◦C] =
0 + 9.1667 × 10−4t [s]). The experimental value was 136.9 ◦C8 and
he surface temperature for the ignition from the LS-DYNA code
18] is 138.0 ◦C.9 All discussed ignition temperatures are stated in
able 3.

The reduction of the time step for the case of the simulation of
emtex 1A slow cookoff test is illustrated in Fig. 4. The maximum
alue of the time step (in accordance to the stability condition (3))
s used up to time 51 565 s. At this time, the production of self-
eat from the sample becomes greater as can be seen from the

ax(�Ti,j+1) curve. The temperature rise will be bigger than 1 ◦C in

he next time step, if the �t is not reduced. After the reduction, the
aximum temperature rise falls down and gradually grows. Again,

f an overrun of the �Tmax occurs, another time step reduction takes

8 The slow cookoff test was carried out three times, the temperatures were mea-
ured in the surrounding air, on the confinement and in the center of the sample.
he value 136.9 ◦C is the mean from all nine measured temperatures. The standard
eviation was 2.2 ◦C [18].
9 The simulation of heat transfer during cookoff in [18] was carried out in the

S-DYNA commercial code. This code is intended for the simulation of fast dynamic
rocesses primarily and is not able to calculate the kinetics of chemical reactions.
herefore the only applicable kinetic model is the zero order reaction (f (˛) = 1 in
q. (1)). Despite this fact, the ignition temperature obtained from the LS-DYNA code
as very similar to the experimental data.
Fig. 4. The gradual reduction of the time step �t and the maximum temperature
rise during the time step max(�Ti,j+1) in the case of the simulation of the slow
cookoff test of Semtex 1A.

place. This process is repeated until the minimum time step �tmin,
the maximum temperature Tmax or the end time tend is reached.

The gradual reduction of the time step takes place only during
last 40 s of calculation in this example. Until this time, the max-
imum time step fulfilling the stability condition (3) can be used.
Using the maximum time step as long as possible improves the
speed of the calculation. Subsequent use of the time step reduction
ensures good precision as the heat production grows.

4. Conclusion

The introduced method for the simulation of heat transfer in
thermally loaded explosives is simple to use and the results are in
agreement with published model examples (RDX sphere) and also
with experimental data (Semtex 1A slow cookoff test). The sim-
ulation is very fast due to the time step reduction and sufficient
precision is also ensured. The independent calculation of conver-
sion ˛ enables the usage of arbitrary reaction models, which is
another advantage of this approach.
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Appendix A. Boundary conditions

It is necessary to specify the initial and boundary conditions
to solve the Eq. (1) by finite difference method. The initial con-
ditions are the temperatures and conversions in each node in the
time when the calculation starts. The boundary condition describes
the temperature of the surface of the modeled body. The surface
temperature Ts can be specified directly as a function of time in
the simplest case. This approach has a disadvantage in case of self
heating. E.g. consider the simplest case with the constant surface
temperature. If the temperature of the sample starts to rise up
to temperature of the surroundings, the temperature of the sur-
face node is still maintained at constant value. Therefore any heat
cannot be transferred from the explosive into the surroundings.
The other common method is to specify the temperature of a
surrounding media (usually fluid, but it can be e.g. a steel container).
In this case it is necessary to specify a convection heat transfer
coefficient h [W m−2 K−1]. The surface temperature Ts is calculated
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rom:

(Ts − Tf ) = −�
Ts − Tk

�x
, (A.1)

here Tf is the fluid temperature and Tk is the temperature in the
ode neighboring to the surface. In this latter case, heat can be
ransferred in both directions between the modeled body and the
urrounding fluid. The direction of heat transfer is depended on the
ifference of the temperatures Ts − Tf . The fluid temperature Tf can
lso vary in time, e.g. in case of the linear heating rate.
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